1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
#![crate_name = "audiostream"]
#![doc(html_root_url = "http://rustdoc.taricorp.net/audiostream/audiostream/")]

#![deny(dead_code,missing_docs)]

#![feature(asm)]
#![feature(core)]
#![feature(custom_attribute)]
#![feature(plugin)]
#![feature(simd)]
#![feature(slice_patterns)]
#![feature(str_char)]
#![feature(test)]
#![plugin(quickcheck_macros)]

//! Audio stream pipelines and processing.
//! 
//! Streams are represented as sequences of buffers, each of which contains zero or more samples.
//! Data is produced from `Source`s on demand and fed into a chain of zero or more `Sink`s until it
//! reaches the end of the pipeline. The pipeline always operates in a "pull" mode, where `Source`s
//! yield buffers only as fast as requested by a `Sink`.
//! 
//! ## Samples
//! 
//! Valid sample formats are bounded by the `Sample` trait. In general a sample will be a primitive
//! numeric value, though this need not be true. Sample values must always be copyable and sendable
//! between threads, and most non-trivial stream transformations require that a number of
//! arithmatic operations be available.
//!
//! ### Clipping
//!
//! In all formats, the nominal range is between -1 and 1, inclusive. In integer formats, the
//! logical interpretation is as a fixed-point value with the radix point left-aligned. For
//! example, a `i8` `Sample` is best considered as a number in range -128/128 through 127/128 by
//! steps of 1/128.
//!
//! A format is considered *soft-clipped* if it is capable of representing values outside the
//! nominal range. Notably, this applies to floating-point formats where numbers outside the
//! nominal range can be represented (but perhaps with some loss of precision). The converse of a
//! hard-clipped format is *soft-clipped*.
//!
//! ## Source taxonomy
//!
//! From least general to most, there are three classes of sources, each of which yield different
//! "flavors" of output.
//!  * `MonoSource`s simply provide a stream of samples of a statically-known format. This stream
//!  is strictly linear and can only mark end-of-stream.
//!  * `Source` is the general static element, providing blocks of a statically-known sample
//!  format. It may pass an arbitrary number of channels at a time and specifies the stream's
//!  sample rate.
//!  * A `DynamicSource` has no properties known at compile-time. Sample format and rate are
//!  specified on a per-buffer basis, requiring reinterpretation of the data before use.
//!  
//! A less-general source can always be adapted into a more-general source. A `MonoAdapter`
//! converts `MonoSource` to `Source`, and `DynAdapter` converts `Source` to `DynamicSource`.

#[macro_use] extern crate lazy_static;
#[macro_use] extern crate log;
#[cfg(test)] extern crate test;
#[cfg(test)] extern crate quickcheck;

extern crate num;
extern crate rand;

use num::{NumCast, Float, FromPrimitive};
use std::marker::PhantomData;
use std::mem;
use std::ops::{Add, Mul, Div};
use std::raw;
use std::raw::Repr;
use std::slice::mut_ref_slice;
use std::sync::atomic::{AtomicBool, Ordering};

#[cfg(feature = "ao")] pub mod ao;
#[cfg(feature = "vorbisfile")] pub mod vorbis;
pub mod synth;

mod interleave;
#[cfg(target_arch = "x86_64")] mod cpu;

/// Type bound for sample formats.
pub trait Sample : Add<Self> + Mul<Self> + Div<Self>
                 + NumCast + FromPrimitive + ::std::fmt::Debug
                 + Copy + Send {

    /// Maximum value of a valid sample.
    fn max() -> Self;
    /// Minimum value of a valid sample.
    fn min() -> Self;
    /// True if this type has a hard limit on values in range [min, max].
    ///
    /// If false, values outside this range are representable and may be used but may incur loss of
    /// precision.
    fn clips_hard() -> bool;
    /// Clip a value to be in range [min, max] (inclusive).
    fn clip(&self) -> Self;

    /// Get a floating-point representation of a sample.
    ///
    /// Full-scale output is in the range -1 to 1. Soft-clipped types may
    /// yield values outside this range.
    fn to_float<F: Float + Sample>(x: Self) -> F {
        let f: F = NumCast::from(x).unwrap();
        let self_max: Self = Sample::max();
        let f_max: F = NumCast::from(self_max).unwrap();
        return f / f_max;
    }

    /// Convert a floating-point sample to any other format.
    ///
    /// Values outside the normal sample range in soft-clipped formats will
    /// not be clipped. When converting to a hard-clipped format, clipping
    /// may occur.
    fn from_float<F: Float + Sample>(mut x: F) -> Self {
        if <Self as Sample>::clips_hard() {
            x = x.clip();
        }

        let self_max: Self = Sample::max();
        let self_max_f: F = NumCast::from(self_max).unwrap();

        let out: Self = NumCast::from(self_max_f * x).unwrap();
        out
    }

    /// Convert from `Self` to an arbitrary other sample format.
    ///
    /// The default intermediate format here is `f64`, capable of losslessly
    /// converting all formats shorter than 52 bits. For shorter input formats
    /// (such as i16), f32 is sufficient for lossless conversion.
    fn convert<X: Sample, I: Float + Sample = f64>(a: Self) -> X {
        <X as Sample>::from_float(Sample::to_float::<I>(a))
    }
}

macro_rules! sample_impl(
    ($t:ty, $range:expr, $hard:expr) => (
        impl Sample for $t {
            #[inline]
            fn max() -> $t { $range.end }
            #[inline]
            fn min() -> $t { $range.start }
            #[inline]
            fn clips_hard() -> bool { $hard }
            #[inline]
            fn clip(&self) -> $t {
                if *self < Sample::min() {
                    Sample::min()
                } else if *self > Sample::max() {
                    Sample::max()
                } else {
                    *self
                }
            }
        }
    );
    // Implicitly soft-clipped by specified range
    ($t:ty, $range:expr) => (
        sample_impl!($t, $range, false);
    );
    // Implicitly hard-clipped by type's range
    ($t:ident) => (
        sample_impl!($t, $t::min_value()
                      .. $t::max_value(), true);
    );
);
sample_impl!(i8);
sample_impl!(i16);
// Conspicuously missing: i24. Probably not a big deal, if we follow ffmpeg's
// precedent and sign-extend i24 for input.
sample_impl!(i32);
sample_impl!(f32, -1.0 .. 1.0);
sample_impl!(f64, -1.0 .. 1.0);

#[test]
fn test_impl_ranges() {
    // Implicit ranges
    assert_eq!(<i16 as Sample>::max(), 32767);
    assert_eq!(<i16 as Sample>::min(), -32768);
    assert_eq!(<i16 as Sample>::clips_hard(), true);
    assert_eq!(0i16.clip(), 0);
    assert_eq!(32767.clip(), 32767);
    
    // Explicit ranges
    assert_eq!(<f32 as Sample>::max(), 1f32);
    assert_eq!(<f32 as Sample>::min(), -1f32);
    assert_eq!(<f32 as Sample>::clips_hard(), false);
    assert_eq!(0f32.clip(), 0f32);
    assert_eq!(-2f32.clip(), -1f32);
}

#[quickcheck]
fn float_roundtrip_is_lossless(x: i16) -> bool {
    x == Sample::from_float(Sample::to_float::<f32>(x))
}

/// Output from `Source` pull.
#[derive(Debug, PartialEq)]
pub enum SourceResult<'a, T:'a> {
    /// Channel-major buffer of samples.
    ///
    /// All channels are guaranteed to have the same number of samples, and there is always at
    /// least one channel.
    Buffer(&'a mut [&'a mut [T]]),
    /// Following samples have the specified rate (in Hz).
    SampleRate(u32),
    /// Reached stream end.
    EndOfStream,
    /// There was an error in the stream.
    StreamError(String),
}

/// A source of samples with defined sample rate.
///
/// Generates buffers of samples of type `T` and passes them to a consumer.
pub trait Source {
    /// The sample format emitted by this source.
    type Output: Sample;
    /// Emit the next buffer.
    fn next<'a>(&'a mut self) -> SourceResult<'a, Self::Output>;
}

impl<'z, F: Sample> Source for Box<Source<Output=F> + 'z> {
    type Output = F;

    fn next<'a>(&'a mut self) -> SourceResult<'a, F> {
        (**self).next()
    }
}

/// The result of pulling from a `DynamicSource`.
///
/// You probably shouldn't use this because it's experimental.
// XXX
pub struct DynBuffer<'z> {
    /// Raw bytes of sample data.
    /// TODO Any might be more appropriate, particularly for externally-defined sample formats.
    /// It's very easy for us to get confused by one of those.
    pub bytes: &'z mut [&'z mut [u8]],
    /// Size of individual samples, in bits.
    ///
    /// Note that it's impossible to tell what actual format
    pub sample_size: u8,
    /// Sample rate in Hz
    pub sample_rate: u32
}

/// A `Source` with format known only at runtime.
///
/// You probably shouldn't use this because it's experimental.
// XXX
pub trait DynamicSource {
    /// Pull the next buffer from the source
    fn next_dyn<'a>(&'a mut self) -> Option<DynBuffer<'a>>;
}

/// Adapts a normal `Source` into a `DynamicSource`.
#[warn(dead_code)]
pub struct DynAdapter<S> {
    sample_rate: u32,
    source: S
}

impl<S: Source> DynAdapter<S> {
    /// Construct a dynamic source adapter from a plain `Source`.
    pub fn from_source(source: S) -> DynAdapter<S> {
        DynAdapter {
            sample_rate: 0,
            source: source
        }
    }
}

/*impl<S> DynamicSource for DynAdapter<S> where S: Source {
    fn next_dyn<'a>(&'a mut self) -> Option<DynBuffer> {
        loop {
            match self.source.next() {
                SourceResult::EndOfStream |
                SourceResult::StreamError(_) => return None,
                SourceResult::SampleRate(sr) => self.sample_rate = sr,
                SourceResult::Buffer(b) => unsafe {
                    // Get bytes only. This transmute makes the len field
                    // of the inner slices wrong becasuse we're changing the
                    // contained type.
                    let mut b = mem::transmute::<&'a mut [&'a mut [<S as Source>::Output]],
                                                 &'a mut [raw::Slice<u8>]>(b);
                    // Correct the len field of channel buffers
                    for i in 0 .. b.len() {
                        b[i].len *= mem::size_of::<<S as Source>::Output>();
                    }
                    
                    return Some(DynBuffer {
                        bytes: mem::transmute::<&'a mut [raw::Slice<u8>],
                                                &'a mut [&'a mut [u8]]>(b),
                        sample_size: mem::size_of::<<S as Source>::Output>() as u8,
                        sample_rate: self.sample_rate
                    })
                }
            }
        }
    }
}*/

/// A `Source` that only generates one channel at an indeterminate sample rate.
///
/// To generalize to a full `Source`, use the `adapt` method.
pub trait MonoSource : Sized {
    /// The sample format yielded by this source.
    type Output;

    /// Get the next set of samples.
    fn next<'a>(&'a mut self) -> Option<&'a mut [Self::Output]>;

    /// Adapts a `MonoSource` into a (more general) `Source`.
    fn adapt(self) -> MonoAdapter<Self::Output, Self> {
        MonoAdapter {
            src: self,
            bp: raw::Slice {
                data: ::std::ptr::null(),
                len: 0
            }
        }
    }
}

/// Generalizes a `MonoSource` into `Source`.
pub struct MonoAdapter<F, T> {
    src: T,
    bp: raw::Slice<F>
}

impl<F, T> Source for MonoAdapter<F, T> where
        F: Sample,
        T: MonoSource<Output=F> {
    type Output = F;

    fn next<'a>(&'a mut self) -> SourceResult<'a, F> {
        // bp is a bit of a hack, since a function-local can't live long enough to be returned. We
        // drop the slice into a struct-private field so the pointers remain live, and it remains
        // safe because the pointer chain is as follows:
        //     caller -> self.bp -> self.src
        // 'a bounds self, so the lifetime is valid for both bp and src.
        self.bp = match self.src.next() {
            None => return SourceResult::EndOfStream,
            Some(b) => b.repr()
        };
        
        SourceResult::Buffer(unsafe {
            mem::transmute::<&mut [raw::Slice<F>], &'a mut [&'a mut [F]]>(
                mut_ref_slice(&mut self.bp)
            )
        })
    }
}

impl<F, T> ::std::ops::Deref for MonoAdapter<F, T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.src
    }
}

/// A thing.
pub trait Sink {
    /// Process a single buffer.
    ///
    /// Returns `Some` if there will be more buffers to process, or `None`
    /// otherwise.
    fn run_once(&mut self) -> Option<()>;

    /// Process buffers indefinitely, until end of stream or terminated.
    ///
    /// As long as `term_cond` is `true` and there are buffers available,
    /// this will process buffers. If `term_cond` is cleared, no additional
    /// buffers will be processed and the function returns.
    ///
    /// If `term_cond` is never modified, this is equivalent to repeatedly
    /// calling `run_once` until it returns `None`.
    fn run(&mut self, term_cond: &AtomicBool) {
        loop {
            if term_cond.load(Ordering::Acquire) || self.run_once().is_none() {
                return;
            }
        }
    }
}

/// A source of uncontrolled samples.
///
/// Owns buffers that get passed down through a pipeline, providing no
/// guarantees about what's in the buffer beyond that it's safe to read
/// and write.
///
/// This struct is used internally by most synthesis sources, and is
/// generally not useful to library users. It may be useful, however,
/// for building custom sources.
pub struct UninitializedSource<F> {
    buffer: Vec<F>
}

impl<F: Sample> UninitializedSource<F> {
    /// Create a source of uncontrolled samples.
    /// 
    /// The yielded buffers will have `size` items.
    pub fn new(size: usize) -> UninitializedSource<F> {
        UninitializedSource {
            buffer: (0..size).map(|_| FromPrimitive::from_usize(0).unwrap()).collect()
        }
    }
}

impl<F> MonoSource for UninitializedSource<F> {
    type Output = F;

    fn next<'a>(&'a mut self) -> Option<&'a mut [F]> {
        Some(&mut self.buffer)
    }
}

/// Make a copy of a specified channel.
///
/// The source channel may be any index, and the destination may be an existing
/// channel (in which case the original data is lost) or one more than the highest
/// valid channel (in which case a new channel is created).
///
/// Due to mutability requirements for channel data, this always makes a copy.
pub struct CopyChannel<F, S> {
    /// Channel index (from 0) to copy from.
    from: usize,
    /// Channel index to copy to.
    to: usize,
    source: S,
    // Contents of `slices` must never outlive the scope in which they are
    // assigned to maintain safety. Covariant lifetime is used to allow the
    // concrete lifetime in `next<'a>()` to be stored within the struct.
    slices: Vec<raw::Slice<F>>,
    samples: Vec<F>,
}

impl<F: Sample, S> CopyChannel<F, S> where S: Source<Output=F> {
    /// Create a new `CopyChannel`.
    pub fn new(from: usize, to: usize, source: S) -> CopyChannel<F, S> {
        CopyChannel {
            from: from,
            to: to,
            source: source,
            slices: Vec::new(),
            samples: Vec::new()
        }
    }
}

impl<F: Sample, S: Source<Output=F>> Source for CopyChannel<F, S> {
    type Output = F;

    fn next<'a>(&'a mut self) -> SourceResult<'a, F> {
        let b: &'a mut [&'a mut [F]] = match self.source.next() {
            SourceResult::Buffer(b) => b,
            x => return x
        };

        assert!(self.from < b.len(), "CopyChannel source must be a valid channel index");
        assert!(self.to <= b.len(), "CopyChannel cannot copy from {} to {} with only {} channels",
                                    self.from, self.to, b.len());

        self.slices.clear();
        self.slices.extend(b.iter().map(|x: &&mut [F]| (*x).repr()));

        self.samples.clear();
        self.samples.extend(b[self.from].iter().map(|x| *x));
        if self.to == b.len() {
            self.slices.push(unsafe {
                mem::transmute::<&'a mut [F], raw::Slice<F>>(&mut self.samples)
            });
        } else {
            self.slices[self.to] = self.slices[self.from];
        }
        SourceResult::Buffer(unsafe {
            mem::transmute::<&mut [raw::Slice<F>],&'a mut [&'a mut [F]]>(&mut self.slices)
        })
    }
}

/// Adjust the amplitude of the input stream by a constant factor.
///
/// A factor greater than one increases amplitude, less than one reduced
/// amplitude.
#[allow(dead_code)]
pub struct Amplify<F, S, P> {
    factor: P,
    source: S,
    format: PhantomData<F>
}

impl<F, S, P> Amplify<F, S, P> {
    /// Create a new amplifier (or attenuator).
    pub fn new(source: S, factor: P) -> Amplify<F, S, P> {
        Amplify {
            factor: factor,
            source: source,
            format: PhantomData
        }
    }
}

impl<F: Sample, S: Source<Output=F>, P: Float + Sample> Source for Amplify<F, S, P> {
    type Output = F;

    fn next<'a>(&'a mut self) -> SourceResult<'a, F> {
        let buf = match self.source.next() {
            SourceResult::Buffer(b) => b,
            x => return x
        };

        // TODO must handle clipping somehow
        for channel in buf.iter_mut() {
            for sample in channel.iter_mut() {
                let samp_f: P = Sample::to_float::<P>(*sample);
                *sample = Sample::from_float(samp_f * self.factor);
            }
        }
        SourceResult::Buffer(buf)
    }
}

#[cfg(test)]
mod tests {
    use super::{Sample, Source, SourceResult, MonoSource, Amplify};

    struct ConstantSource<F> {
        data: Vec<F>,
        sbuf: Vec<F>
    }

    impl<F: Sample + Clone> MonoSource for ConstantSource<F> {
        type Output = F;

        fn next<'a>(&'a mut self) -> Option<&'a mut [F]> {
            self.sbuf = self.data.clone();
            Some(&mut self.sbuf)
        }
    }

    impl<F> ::std::default::Default for ConstantSource<F> {
        fn default() -> ConstantSource<F> {
            ConstantSource {
                data: vec![],
                sbuf: vec![]
            }
        }
    }


    #[quickcheck]
    fn copychannel_copies_channels(xs: Vec<i16>) -> bool {
        let mut src = super::CopyChannel::new(0, 1, ConstantSource::<i16> {
            data: xs.clone(),
            sbuf: vec![]
        }.adapt());
        if let SourceResult::Buffer(out) = src.next() {
            out[1] == &xs[..] && out[0] == out[1]
        } else {
            unreachable!();
        }
    }

    #[test]
    fn test_amplify() {
        let mut src = Amplify::<_, _, f32>::new(ConstantSource::<i16> {
                data: vec![0, 64, 128, 64, 0, -64, -128, -64, 0],
                sbuf: vec![]
            }.adapt(),
            1.0
        );

        assert_eq!(src.next(),
                   SourceResult::Buffer(
                       &mut [&mut [0i16, 64, 128, 64, 0, -64, -128, -64, 0]]
                   ));
    }
}